Hive 专题
您的位置:Hive > Hive 专题 > Hive文件格式
Hive文件格式
作者:--    发布时间:2019-11-22


Hive支持以下类型的文件格式

  • Text File

  • SequenceFile

  • RCFile

  • Avro Files

  • ORC Files

  • Parquet

  • Custom INPUTFORMAT and OUTPUTFORMAT


配置参数hive.default.fileformat(默认值为Text file)决定了我们执行 CREATE TABLE或者ALTER TABLE语句时,如果没有指定文件类型的默认文件类型。

TEXTFILESEQUENCEFILE的存储格式都是基于行存储的,RCFILE是基于行列混合的思想,先按行把数据划分成N个row group,在row group中对每个列分别进行存储。

基于HDFS的行存储具备快速数据加载和动态负载的高适应能力,因为行存储保证了相同记录的所有域都在同一个集群节点。但是它不太满足快速的查询响应时间的要求,因为当查询仅仅针对所有列中的 少数几列时,它就不能跳过不需要的列,直接定位到所需列;同时在存储空间利用上,它也存在一些瓶颈,由于数据表中包含不同类型,不同数据值的列,行存储不易获得一个较高的压缩比。RCFILE是基于SEQUENCEFILE实现的列存储格式。除了满足快速数据加载和动态负载高适应的需求外,也解决了SEQUENCEFILE的一些瓶颈。

TextFile:

 Hive默认格式,数据不做压缩,磁盘开销大,数据解析开销大。

可结合Gzip、Bzip2、Snappy等使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作

SequenceFile:

SEQUENCEFILE是Hadoop API 提供的一种二进制文件,它将数据以<key,value>的形式序列化到文件中。这种二进制文件内部使用Hadoop 的标准的Writable 接口实现序列化和反序列化。它与Hadoop API中的MapFile 是互相兼容的。Hive 中的SequenceFile 继承自Hadoop API 的SequenceFile,不过它的key为空,使用value 存放实际的值, 这样是为了避免MR 在运行map 阶段的排序过程。


SequenceFile的文件结构图:

d0399873-2c9e-3923-ab50-93644d9b8138.jpg


Header通用头文件格式:

SEQ3BYTE
Nun1byte数字
keyClassName
ValueClassName
compression(boolean)指明了在文件中是否启用压缩
blockCompression(boolean,指明是否是block压缩
compressioncodec
Metadata文件元数据
Sync头文件结束标志

Block-Compressed SequenceFile格式

cd8a8be6-a2e4-39c8-a598-357278f1e336.jpg

RCFile

RCFile是Hive推出的一种专门面向列的数据格式。 它遵循“先按列划分,再垂直划分”的设计理念。当查询过程中,针对它并不关心的列时,它会在IO上跳过这些列。需要说明的是,RCFile在map阶段从 远端拷贝仍然是拷贝整个数据块,并且拷贝到本地目录后RCFile并不是真正直接跳过不需要的列,并跳到需要读取的列, 而是通过扫描每一个row group的头部定义来实现的,但是在整个HDFS Block 级别的头部并没有定义每个列从哪个row group起始到哪个row group结束。所以在读取所有列的情况下,RCFile的性能反而没有SequenceFile高。

行存储

 HDFS块内行存储的例子:

c5adc6f6-4a57-3994-b44c-2a943152bc58.png

 基于Hadoop系统行存储结构的优点在于快速数据加载和动态负载的高适应能力,这是因为行存储保证了相同记录的所有域都在同一个集群节点,即同一个 HDFS块。不过,行存储的缺点也是显而易见的,例如它不能支持快速查询处理,因为当查询仅仅针对多列表中的少数几列时,它不能跳过不必要的列读取;此 外,由于混合着不同数据值的列,行存储不易获得一个极高的压缩比,即空间利用率不易大幅提高。

列存储

HDFS块内列存储的例子

a432e6af-9a73-355c-ac77-b7c185da959c.jpg

在HDFS上按照列组存储表格的例子。在这个例子中,列A和列B存储在同一列组,而列C和列D分别存储在单独的列组。查询时列存储能够避免读不必要的列, 并且压缩一个列中的相似数据能够达到较高的压缩比。然而,由于元组重构的较高开销,它并不能提供基于Hadoop系统的快速查询处理。列存储不能保证同一 记录的所有域都存储在同一集群节点,行存储的例子中,记录的4个域存储在位于不同节点的3个HDFS块中。因此,记录的重构将导致通过集群节点网络的大 量数据传输。尽管预先分组后,多个列在一起能够减少开销,但是对于高度动态的负载模式,它并不具备很好的适应性。

RCFile结合行存储查询的快速和列存储节省空间的特点:首先,RCFile保证同一行的数据位于同一节点,因此元组重构的开销很低;其次,像列存储一样,RCFile能够利用列维度的数据压缩,并且能跳过不必要的列读取。

HDFS块内RCFile方式存储的例子:

c5adc6f6-4a57-3994-b44c-2a943152bc58.png

ORCFile

ORC File,它的全名是Optimized Row Columnar (ORC) file,其实就是对RCFile做了一些优化。据官方文档介绍,这种文件格式可以提供一种高效的方法来存储Hive数据。它的设计目标是来克服Hive其他格式的缺陷。运用ORC File可以提高Hive的读、写以及处理数据的性能。

和RCFile格式相比,ORC File格式有以下优点:

  (1)、每个task只输出单个文件,这样可以减少NameNode的负载;

  (2)、支持各种复杂的数据类型,比如: datetime, decimal, 以及一些复杂类型(struct, list, map, and union);

  (3)、在文件中存储了一些轻量级的索引数据;

  (4)、基于数据类型的块模式压缩:a、integer类型的列用行程长度编码(run-length encoding);b、String类型的列用字典编码(dictionary encoding);

  (5)、用多个互相独立的RecordReaders并行读相同的文件;

  (6)、无需扫描markers就可以分割文件;

  (7)、绑定读写所需要的内存;

  (8)、metadata的存储是用 Protocol Buffers的,所以它支持添加和删除一些列。

ORC File文件结构

  ORC File包含一组组的行数据,称为stripes,除此之外,ORC File的file footer还包含一些额外的辅助信息。在ORC File文件的最后,有一个被称为postscript的区,它主要是用来存储压缩参数及压缩页脚的大小。

在默认情况下,一个stripe的大小为250MB。大尺寸的stripes使得从HDFS读数据更高效。

  在file footer里面包含了该ORC File文件中stripes的信息,每个stripe中有多少行,以及每列的数据类型。当然,它里面还包含了列级别的一些聚合的结果,比如:count, min, max, and sum。下图显示出可ORC File文件结构:

OrcFileLayout.png

Stripe结构

  从上图我们可以看出,每个Stripe都包含index data、row data以及stripe footer。Stripe footer包含流位置的目录;Row data在表扫描的时候会用到。

  Index data包含每列的最大和最小值以及每列所在的行。行索引里面提供了偏移量,它可以跳到正确的压缩块位置。具有相对频繁的行索引,使得在stripe中快速读取的过程中可以跳过很多行,尽管这个stripe的大小很大。在默认情况下,最大可以跳过10000行。拥有通过过滤谓词而跳过大量的行的能力,你可以在表的 secondary keys 进行排序,从而可以大幅减少执行时间。比如你的表的主分区是交易日期,那么你可以对次分区(state、zip code以及last name)进行排序。

Hive里面如何用ORCFile

  在建Hive表的时候我们就应该指定文件的存储格式。所以你可以在Hive QL语句里面指定用ORCFile这种文件格式,如下:

CREATE TABLE ... STORED AS ORC
ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT ORC
SET hive.default.fileformat=Orc

所有关于ORCFile的参数都是在Hive QL语句的TBLPROPERTIES字段里面出现,他们是:

KeyDefaultNotes
orc.compressZLIBhigh level compression (one of NONE, ZLIB, SNAPPY)
orc.compress.size262,144number of bytes in each compression chunk
orc.stripe.size268435456number of bytes in each stripe
orc.row.index.stride10,000number of rows between index entries (must be >= 1000)
orc.create.indextruewhether to create row indexes

下面的例子是建立一个没有启用压缩的ORCFile的表

create table Addresses (
  name string,
  street string,
  city string,
  state string,
  zip int
) stored as orc tblproperties ("orc.compress"="NONE");


序列化和压缩

  对ORCFile文件中的列进行压缩是基于这列的数据类型是integer或者string。具体什么序列化我就不涉及了。。想深入了解的可以看看下面的英文:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC。



参考文档:

http://yugouai.iteye.com/blog/1851606

https://cwiki.apache.org/confluence/display/Hive/FileFormats

http://www.iteblog.com/archives/1014

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

 

网站声明:
本站部分内容来自网络,如您发现本站内容
侵害到您的利益,请联系本站管理员处理。
联系站长
373515719@qq.com
关于本站:
编程参考手册