json文件以可读的格式将数据存储为文本。 json代表javascript object notation。 使用read_json
函数,pandas可以读取json文件。
通过将以下数据复制到文本编辑器(如记事本)来创建json文件。选择文件类型作为所有文件(.),使用.json
扩展名保存文件,假设保存的文件名称为:input.json。
{
"id":["1","2","3","4","5","6","7","8" ],
"name":["rick","dan","michelle","ryan","gary","nina","simon","guru" ]
"salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ],
"startdate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013",
"7/30/2013","6/17/2014"],
"dept":[ "it","operations","it","hr","finance","it","operations","finance"]
}
pandas库的read_json
函数可用于将json文件读入为pandas dataframe数据结构类型。
import pandas as pd
data = pd.read_json('path/input.json')
print (data)
当我们执行上面的代码时,它会产生以下结果。
dept id name salary startdate
0 it 1 rick 623.30 1/1/2012
1 operations 2 dan 515.20 9/23/2013
2 it 3 tusar 611.00 11/15/2014
3 hr 4 ryan 729.00 5/11/2014
4 finance 5 gary 843.25 3/27/2015
5 it 6 rasmi 578.00 5/21/2013
6 operations 7 pranab 632.80 7/30/2013
7 finance 8 guru 722.50 6/17/2014
与在前一章中已经看到的读取csv文件类似,读取json文件到dataframe后,pandas库的read_json
函数也可用于读取一些特定列和特定行。 使用.loc()
的多轴索引方法。选择显示salary
和name
列的某些行。
import pandas as pd
data = pd.read_json('path/input.xlsx')
# use the multi-axes indexing funtion
print (data.loc[[1,3,5],['salary','name']])
当我们执行上面的代码时,它会产生以下结果。
salary name
1 515.2 dan
3 729.0 ryan
5 578.0 rasmi
还可以将to_json
函数与参数一起应用于将json文件内容读入单个记录。
import pandas as pd
data = pd.read_json('path/input.xlsx')
print(data.to_json(orient='records', lines=true))
执行上面示例代码,得到以下结果 -
{"dept":"it","id":1,"name":"rick","salary":623.3,"startdate":"1\/1\/2012"}
{"dept":"operations","id":2,"name":"dan","salary":515.2,"startdate":"9\/23\/2013"}
{"dept":"it","id":3,"name":"tusar","salary":611.0,"startdate":"11\/15\/2014"}
{"dept":"hr","id":4,"name":"ryan","salary":729.0,"startdate":"5\/11\/2014"}
{"dept":"finance","id":5,"name":"gary","salary":843.25,"startdate":"3\/27\/2015"}
{"dept":"it","id":6,"name":"rasmi","salary":578.0,"startdate":"5\/21\/2013"}
{"dept":"operations","id":7,"name":"pranab","salary":632.8,"startdate":"7\/30\/2013"}
{"dept":"finance","id":8,"name":"guru","salary":722.5,"startdate":"6\/17\/2014"}